Chapitre 2

Groupes de permutations

Ce court chapitre a pour but de rappeler les notions de base sur les groupes de permutations et, en particulier, d'établir les propriétés de la signature (la signature d'une permutation est un signe ± 1 décrivant sa parité).

1. Définitions et premières propriétés

1.1. Groupe des permutations d'un ensemble

1.1.1. Définition. Soit A un ensemble. On note \mathfrak{S}_A l'ensemble des applications bijectives $\sigma: A \to A$ (qu'on appelle aussi permutations de A). Pour la composition des applications \circ , on a une structure de groupe (\mathfrak{S}_A, \circ) , non commutatif si card $A \geqslant 3$.

L'élément neutre du groupe est Id_A et le symétrique d'un élément $\sigma \in \mathfrak{S}_A$ est la bijection inverse σ^{-1} (l'associativité étant toujours vraie pour la composition des applications). On s'intéressera ici surtout au cas où A est un ensemble fini, noté $A = \{a_1, \ldots, a_n\}$.

1.1.2. Notation. Une permutation $\sigma \in \mathfrak{S}_A$ pourra être définie en donnant la liste des images successives $\sigma(a_i)$ des éléments $a_i \in A$. On notera ainsi

$$\sigma = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{bmatrix}$$

la permutation σ telle que $\sigma(a_i) = b_i$.

1.1.3. Définition. Le support d'une paermutation $\sigma \in \mathfrak{S}_A$ est par définition la partie

Supp
$$\sigma = \{x \in A / \sigma(x) \neq x\}.$$

C'est donc le complémentaire dans A de l'ensemble des éléments invariants, soit

Inv
$$\sigma = \{ x \in A / \sigma(x) = x \}.$$

1.1.4. Définition. On désigne par \mathfrak{S}_n l'ensemble des permutations de $\{1, 2, ..., n\}$. On a card $\mathfrak{S}_n = n!$.

En effet, une telle permutation est obtenue en choisissant $\sigma(1)$ dans $\{1, \ldots, n\}$ (n choix possibles), puis $\sigma(2)$ dans $\{1, \ldots, n\} \setminus \{\sigma(1)\}$ (n-1 choix possibles), puis $\sigma(3)$ dans $\{1, \ldots, n\} \setminus \{\sigma(1), \sigma(2)\}$ (n-2 choix possibles), etc, ce qui donne

card
$$\mathfrak{S}_n = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1 = n!$$

(il ne reste plus qu'un choix pour le dernier élément $\sigma(n)$, les autres ayant déjà été choisis).

1.2. Transpositions et cycles

Les exemples fondamentaux de permutations sont les transpositions et les cycles :

1.2.1. Transpositions. Si a, b sont des éléments distincts de A, on note $\tau_{a,b} \in \mathfrak{S}_A$ la permutation définie par

$$\tau_{a,b}(a) = b$$
, $\tau_{a,b}(b) = a$, $\tau_{a,b}(x) = x$, si $x \in A \setminus \{a,b\}$.

La permutation $\tau_{a,b}$ correspond donc à faire l'échange des éléments a,b sans "toucher" aux autres éléments, par suite Supp $\tau_{a,b} = \{a,b\}$. Il est clair que $\tau_{a,b}$ est une involution, c'est-à-dire que $\tau_{a,b}^2 = \operatorname{Id}_A$ (ou encore que c'est un élément d'ordre 2 du groupe \mathfrak{S}_A).

- **1.2.2.** Rappel. Dans un groupe (G, *), un élément x est dit d'ordre fini s'il existe un entier $k \in \mathbb{N}^*$ tel que $x^k = x * x * \cdots * x = 1_G$, et on appelle ordre de x, noté ordre(x), le plus petit entier $k \in \mathbb{N}^*$ tel que $x^k = 1_G$.
- **1.2.3.** Cycle de longueur ℓ . Soit a_1, a_2, \ldots, a_ℓ des éléments 2 à 2 distincts de l'ensemble A. on considère la permutation c définie par

$$c = \begin{bmatrix} a_1 & a_2 & \dots & a_{\ell-1} & a_{\ell} & b_1 & b_2 & \dots & b_{n-\ell} \\ a_2 & a_3 & \dots & a_{\ell} & a_1 & b_1 & b_2 & \dots & b_{n-\ell} \end{bmatrix}$$

où $A \setminus \{a_1, \ldots, a_\ell\} = \{b_1, \ldots, b_{n-\ell}\}$, en d'autres termes c est telle que

$$c: a_1 \mapsto a_2 \mapsto a_3 \mapsto \cdots \mapsto a_{\ell-2} \mapsto a_{\ell-1} \mapsto a_{\ell} \mapsto a_1$$

et c(x) = x pour $x \notin \{a_1, \ldots, a_\ell\}$. Un tel cycle est noté en abrégé

$$c=(a_1\ a_2\ \dots\ a_\ell).$$

Le support du cycle c est donc la partie Supp $c = \{a_1, \ldots, a_\ell\}$, et une transposition $\tau_{a,b}$ n'est pas autre chose qu'un cycle (a b) de longueur 2. En général, il est facile de voir que $c^k(a_i) = a_{k+i \mod \ell}$, c'est-à-dire

$$c^{k} = \begin{bmatrix} a_{1} & a_{2} & \dots & a_{\ell-k} & a_{\ell-k+1} & \dots & a_{\ell-1} & a_{\ell} & b_{1} & b_{2} & \dots & b_{n-\ell} \\ a_{k+1} & a_{k+2} & \dots & a_{\ell} & a_{1} & \dots & a_{k-1} & a_{k} & b_{1} & b_{2} & \dots & b_{n-\ell} \end{bmatrix}$$

pour $k \leq \ell - 1$ et $c^{\ell} = \operatorname{Id}_A$, par conséquent ordre $(c) = \ell$. Il est facile de voir que l'on a pour tout $i = 0, 1, \dots, \ell - 1$ l'égalité

$$c = (a_1 \ a_2 \ \dots \ a_\ell) = (a_{i+1} \ a_{i+2} \ \dots \ a_\ell \ a_1 \ a_2 \ \dots \ a_i),$$

par exemple $(1\ 2\ 3\ 4\ 5)=(4\ 5\ 1\ 2\ 3)$, c'est-à-dire que le cycle ne dépend pas de son point de départ, si "l'ordre cyclique" des éléments est préservé. En revanche, le cycle $(1\ 2\ 3\ 4\ 5)$ n'est pas égal au cycle $(1\ 3\ 2\ 4\ 5)$.

1.2.4. Exemple. Le groupe \mathfrak{S}_3 est constitué des 6 éléments

$$\mathfrak{S}_3 = \{ \mathrm{Id}, c, c^2, \tau_{1,2}, \tau_{2,3}, \tau_{1,3} \}$$
 où $c = (1 \ 2 \ 3), c^2 = (1 \ 3 \ 2), c^3 = \mathrm{Id}.$

On calcule aisément la table de Pythagore du groupe \mathfrak{S}_3 :

$(u,v)\mapsto u\circ v$	$u^{\setminus v}$	Id	c	c^2	$ au_{1,2}$	$ au_{2,3}$	$ au_{1,3}$
	Id	Id	c	c^2	$ au_{1,2}$	$ au_{2,3}$	$ au_{2,3}$
	c	c	c^2	Id	$ au_{1,3}$	$ au_{1,2}$	$ au_{2,3}$
	c^2	c^2	Id	c	$ au_{2,3}$	$ au_{1,3}$	$ au_{1,2}$
	$ au_{1,2}$	$ au_{1,2}$	$ au_{2,3}$	$ au_{1,3}$	Id	c	c^2
	$ au_{2,3}$	$ au_{2,3}$	$ au_{1,3}$	$ au_{1,2}$	c^2	Id	c
	$ au_{1,3}$	$ au_{1,3}$	$ au_{1,2}$	$ au_{2,3}$	c	c^2	Id

On voit en particulier que le groupe (\mathfrak{S}_3, \circ) est non commutatif, et donc \mathfrak{S}_n est non commutatif pour $n \geqslant 3$ (mais $\mathfrak{S}_1 = \{ \mathrm{Id} \}$ et $\mathfrak{S}_2 = \{ \mathrm{Id}, \tau_{1,2} \}$ sont commutatifs).

1.3. Décomposition en cycles à supports disjoints

Prenons d'abord l'exemple de la permutation $\sigma \in \mathfrak{S}_8$ telle que

$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 1 & 7 & 8 & 5 & 2 & 3 & 4 \end{bmatrix}.$$

On a Inv $\sigma = \{5\}$ et Supp $\sigma = \{1, 2, 3, 4, 6, 7, 8\}$. Considérons les images des éléments successifs du support :

$$1 \mapsto 6 \mapsto 2 \mapsto 1$$
$$3 \mapsto 7 \mapsto 3$$
$$4 \mapsto 8 \mapsto 4$$

Pour chaque ligne, on prend les images successives et on s'arrête lorsqu'on retombe sur l'élément de départ. On considère ensuite à chaque ligne le premier élément du

4

support qui n'a pas encore été pris en compte. On voit alors que σ est la composée d'un cycle de longueur 3 et de deux cycles de longueur 2 (transpositions) :

$$\sigma = (1 \ 6 \ 2) \circ (3 \ 7) \circ (4 \ 8),$$

avec l'élément 5 qui n'intervient pas (car invariant). L'ordre des composées importe peu, car on a le résultat évident suivant.

1.3.1. Lemme. Si c et c' sont des cycles dont les supports $\operatorname{Supp} c$ et $\operatorname{Supp} c'$ sont disjoints $(\operatorname{Supp} c \cap \operatorname{Supp} c' = \emptyset)$, alors $c' \circ c = c \circ c'$.

Quel que soit l'ordre de composition, l'image $\sigma(x)$ de la composée σ coïncide en effet avec c(x) si $x \in \text{Supp } c$, avec c'(x) si $x \in \text{Supp } c'$, tandis que $\sigma(x) = x$ si $x \notin \text{Supp } c \cup \text{Supp } c'$.

En considérant les itérés successifs $\sigma^k(x)$ des éléments du support d'une permutation σ quelconque, on obtient de même le résultat général suivant.

1.3.2. Théorème. Toute permuation $\sigma \in \mathfrak{S}_A$ d'un ensemble fini A se décompose en un produit commutatif de cycles, c'est-à-dire que

$$\sigma = c_1 \circ c_2 \circ \cdots \circ c_p$$

avec des cycles c_j dont les supports $\operatorname{Supp} c_j$ sont 2 à 2 disjoints. Une telle décomposition est unique à l'ordre près des c_j et on a

$$\operatorname{Supp} \sigma = \operatorname{Supp} c_1 \cup \ldots \cup \operatorname{Supp} c_p.$$

Démonstration. Il faut d'abord voir que si on prend les itérés d'un élément $x_0 \in \operatorname{Supp} \sigma$ quelconque, soit

$$x_0, x_1 = \sigma(x_0), \dots, x_i = \sigma(x_{i-1}) = \sigma^i(x_0),$$

il y nécessairement un indice $m \in [2, \operatorname{card} A]$ minimal tel que $x_m \in \{x_0, \dots, x_{m-1}\}$ (sinon on aurait $\operatorname{card}\{x_0, \dots, x_{i-1}\} \geqslant i$ pour tout i, ce qui contredit la finitude de A). D'autre part, on a nécessairement $x_m = \sigma^m(x_0) = x_0$, sinon on "retomberait" sur $x_m = \sigma^m(x_0) = x_i = \sigma^i(x_0)$ avec i > 0, et ceci impliquerait $x_{m-i} = \sigma^{m-i}(x_0) = x_0$, contredisant la minimalité de m. Enfin , si on prend $y_0 \in \operatorname{Supp} \sigma$ en dehors de "l'orbite" $\{x_0, \dots, x_{m-1}\}$ de x_0 , alors tous les itérés $y_i = \sigma^i(y_0)$ sont également en dehors de cette orbite (vérification évidente : $\sigma^i(y_0) = \sigma^j(x_0)$ impliquerait $y_0 = \sigma^{j-i}(x_0)$ ou $y_0 = \sigma^{j+m-i}(x_0)$ suivant que $j \geqslant i$ ou j < i). Les orbites qui constituent les supports des cycles sont donc disjointes.

1.4. Ordre d'une permutation

Soit $\sigma \in \mathfrak{S}_A$ une permutation d'un ensemble fini A, et écrivons

$$\sigma = c_1 \circ c_2 \circ \cdots \circ c_p$$

avec les cycles de longueurs respectives $\ell_1, \ell_2, \dots, \ell_p$. Comme les cycles commutent, on trouve pour tout $k \in \mathbb{N}^*$

$$\sigma^k = c_1^k \circ c_2^k \circ \dots \circ c_p^k$$

(on remarquera que dans un groupe non commutatif (G,\cdot) , on a en général $(xy)^2 = xyxy$, ce qui ne coïncide avec $x^2y^2 = xxyy$ que si x et y commutent). On a $c_j^k = \operatorname{Id}$ si et seulement si k est multiple de la longeur ℓ_j du cycle c_j . Or, pour $x \in \operatorname{Supp} c_j$, on a $\sigma^k(x) = c_j^k(x)$, donc on voit que $\sigma^k = \operatorname{Id}$ si et seulement si k est simultanément multiple de $\ell_1, \ell_2, \ldots, \ell_p$. Le plus petit entier $k \in \mathbb{N}^*$ tel que $\sigma^k = \operatorname{Id}$ est donc le plus petit commun multiple des ℓ_j . On peut énoncer :

1.4.1. Théorème. Pour trouver l'ordre d'une permutation σ , on cherche une décomposition en cycles, et alors l'ordre

$$\operatorname{ordre}(\sigma) = \operatorname{ppcm}(\ell_1, \ell_2, \dots, \ell_p)$$

est le ppcm des longueurs des cycles c_1, c_2, \ldots, c_p à supports disjoints qui composent σ .

On trouve ainsi par exemple

$$\operatorname{ordre}((1\ 6\ 2)\circ(3\ 7)\circ(4\ 8)) = \operatorname{ppcm}(3,2,2) = 6.$$

2. Signature d'une permutation

2.1. Nombre d'inversions et signature

On désigne par P_n l'ensembles des paires $\{i,j\}$ (non ordonnées, $i\neq j$) d'éléments de $\{1,2,\ldots,n\}$. On a

$$\operatorname{card} P_n = \binom{n}{2} = \frac{n(n-1)}{2}.$$

Si $\sigma \in \mathfrak{S}_n$, alors σ induit une application $\widehat{\sigma}: P_n \to P_n$ définie par

$$\widehat{\sigma}(\{i,j\}) = \{\sigma(i), \sigma(j)\},\$$

et il est clair que c'est une bijection de P_n dans P_n , d'inverse $\widehat{\sigma^{-1}}$. On dit que la paire $\{i,j\}$ est inversée par σ (resp. non inversée) si

$$\frac{\sigma(j) - \sigma(i)}{j - 1} < 0, \quad \text{resp.} \quad \frac{\sigma(j) - \sigma(i)}{j - 1} > 0,$$

autrement dit, si $\sigma(i)$, $\sigma(j)$ sont en ordre inverse (ou non) de i, j.

2.1.1. Définition. Le nombre d'inversions d'une permutation $\sigma \in \mathfrak{S}_n$ est, comme son nom l'indique, le nombre de paires $\{i, j\}$ inversées par σ :

$$N(\sigma) = \operatorname{card}\left\{\{i, j\} \in P_n / \frac{\sigma(j) - \sigma(i)}{j - i} < 0\right\}.$$

On a donc $N(\sigma) \in \{0, 1, \dots, \frac{n(n-1)}{2}\}$. La signature $\varepsilon(\sigma)$ de la permutation σ est la valeur ± 1 définie par $\varepsilon(\sigma) = (-1)^{N(\sigma)}.$

2.1.2. Examples.

6

- (a) L'application identique $\sigma=\mathrm{Id}$ n'a pas d'inversions, par conséquent $N(\mathrm{Id})=0,$ $\varepsilon(\mathrm{Id})=+1.$
- (b) La transposition $\tau_{a,b}$ (avec disons a < b) s'écrit

$$\tau_{a,b} = \begin{bmatrix} 1 & 2 & \dots & a-1 & a & a+1 & \dots & b-1 & b & b+1 & \dots n \\ 1 & 2 & \dots & a-1 & b & a+1 & \dots & b-1 & a & b+1 & \dots n \end{bmatrix}$$

donne lieu aux paires inversées $\{a, b\}$ et

$${a, i} \mapsto {b, i}, \quad a + 1 \le i \le b - 1,$$

 ${i, b} \mapsto {i, a}, \quad a + 1 \le i \le b - 1,$

soit 2p+1 paires inversées avec p=(b-1)-(a+1)+1=b-a-1. On a donc $\varepsilon(\tau_{a,b})=-1$.

(c) Le cycle $c = (1 \ 2 \ \cdots \ \ell)$ de longueur ℓ

$$c = \begin{bmatrix} 1 & 2 & \dots & \ell - 1 & \ell & \ell + 1 & \dots & n \\ 2 & 3 & \dots & \ell & 1 & \ell + 1 & \dots & n \end{bmatrix}$$

donne lieu aux paires inversées $\{i,\ell\} \mapsto \{i+1,1\}$ pour $1 \leqslant i \leqslant \ell-1$. On obtient par conséquent

$$N(c) = \ell - 1, \quad \varepsilon(c) = (-1)^{\ell - 1}.$$

(d) La permutation σ correspondant au renversement de l'ordre

$$c = \begin{bmatrix} 1 & 2 & \dots & n-1 & n \\ n & n-1 & \dots & 2 & 1 \end{bmatrix}$$

admet le nombre maximum $N(\sigma) = \frac{n(n-1)}{2}$ d'inversions, et on a par conséquent $\varepsilon(\sigma) = (-1)^{n(n-1)/2}$.

On a la formule importante suivante

2.1.3. Formule de la signature. Pour tout $\sigma \in \mathfrak{S}_n$, on a

$$\varepsilon(\sigma) = \prod_{\{i,j\} \in P_n} \frac{\sigma(j) - \sigma(i)}{j - i}.$$

Démonstration. Posons

$$\widetilde{\varepsilon}(\sigma) = \prod_{\{i,j\} \in P_n} \frac{\sigma(j) - \sigma(i)}{j - i} \in \mathbb{Q}^*.$$

Il est clair que le signe de $\widetilde{\varepsilon}(\sigma)$ est $(-1)^{N(\sigma)}$. Mais si on fait le changement de variable bijectif $\{u,v\} = \widehat{\sigma}(\{i,j\}) = \{\sigma(i),\sigma(j)\}$, on voit que le numérateur et le démoninateur de $\widetilde{\varepsilon}(\sigma)$ sont tous les deux égaux en valeur absolue à

$$\prod_{\{u,v\}\in P_n} |v-u| = \prod_{2\leqslant v\leqslant n} \prod_{1\leqslant u\leqslant v-1} (v-u) = \prod_{2\leqslant v\leqslant n} (v-1)! = \prod_{1\leqslant i\leqslant n-1} i! = \prod_{i=1}^{n-1} i^{n-i}.$$

Il en résulte que $|\widetilde{\varepsilon}(\sigma)| = 1$ et donc $\widetilde{\varepsilon}(\sigma) = \varepsilon(\sigma)$.

2.2. Propriété d'homomorphisme de la signature

On va voir que $\varepsilon : \mathfrak{S}_n \to \{+1, -1\}$ est un homomorphisme du groupe (\mathfrak{S}_n, \circ) dans le groupe multiplicatif $(\{+1, -1\}, \times)$, autrement dit :

2.2.1. Théorème. Pour toutes permutations $\sigma, \tau \in \mathfrak{S}_n$, on a

$$\varepsilon(\sigma \circ \tau) = \varepsilon(\sigma)\varepsilon(\tau).$$

Rappelons qu'un homomorphisme $\varphi: G \to H$ entre deux groupes (G, *), (H, *') est une application telle que, pour tous $x, y \in G$, on ait $\varphi(x * y) = \varphi(x) *' \varphi(y)$. Dans ce cas

$$\operatorname{Ker} \varphi = \{ x \in G \, / \, \varphi(x) = 1_H \}, \quad \operatorname{Im} \varphi = \{ u = \varphi(x) \in H \, / \, x \in G \}$$

sont des sous-groupes de G et H respectivement.

Démonstration. Pour toutes permutations $\sigma, \tau \in \mathfrak{S}_n$, il vient

$$\varepsilon(\sigma \circ \tau) = \prod_{\{i,j\} \in P_n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{j - i} = \prod_{\{i,j\} \in P_n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} \prod_{\{i,j\} \in P_n} \frac{\tau(j) - \tau(i)}{j - i}.$$

Dans le premier produit du membre de droite, faisons le changement de variable bijectif $\{u,v\} = \widehat{\tau}(\{i,j\}) = \{\tau(i),\tau(j)\}$. Ceci donne

$$\prod_{\{i,j\}\in P_r} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} = \prod_{\{u,v\}\in P_r} \frac{\sigma(v) - \sigma(u)}{v - u}.$$

Par conséquent

$$\varepsilon(\sigma \circ \tau) = \prod_{\{u,v\} \in P_n} \frac{\sigma(v) - \sigma(u)}{v - u} \prod_{\{i,j\} \in P_n} \frac{\tau(j) - \tau(i)}{j - i} = \varepsilon(\sigma)\varepsilon(\tau). \quad \Box$$

2.2.2. Corollaire. Soit $A = \{a_1, \ldots, a_n\}$ un ensemble fini. Une permutation $\sigma \in \mathfrak{S}_A$ est définie à l'aide d'une permutation $\alpha \in \mathfrak{S}_n$ par la correspondance bijective

$$\alpha \in \mathfrak{S}_n \longmapsto \sigma \in \mathfrak{S}_A, \quad \sigma(a_i) = a_{\alpha(i)}.$$

Alors la signature de σ définie par $\varepsilon(\sigma) := \varepsilon(\alpha)$ ne dépend pas de la numérotation des éléments de A, autrement dit, si $A = \{a'_1, \ldots, a'_n\}$ avec une autre numérotation des éléments, et si $\beta \in \mathfrak{S}_n$ est telle que $\sigma(a'_i) = a'_{\beta(i)}$, on a bien $\varepsilon(\alpha) = \varepsilon(\beta)$.

Démonstration. Le changement de numérotation est donné par $a'_i = a_{\gamma(i)}$ avec une certaine permutation $\gamma \in \mathfrak{S}_n$. Posant $j = \gamma(i)$ et $i = \gamma^{-1}(j)$, il vient $a'_{\gamma^{-1}(j)} = a_j$, donc

$$\sigma(a_i') = \sigma(a_{\gamma(i)}) = a_{\alpha(\gamma(i))} = a_{\gamma^{-1}(\alpha(\gamma(i)))}' = a_{\beta(i)}',$$

ce qui montre que les permutations $\alpha, \beta \in \mathfrak{S}_n$ sont liées par $\beta = \gamma^{-1} \circ \alpha \circ \gamma$. Mais on a alors

$$\varepsilon(\beta) = \varepsilon(\gamma)^{-1} \varepsilon(\alpha) \varepsilon(\gamma) = \varepsilon(\alpha).$$

2.2.3. Corollaire. Pour tout ensemble fini A, il existe un homomorphisme signature $\varepsilon : \mathfrak{S}_A \to \{+1, -1\}$ défini indépendamment de la numérotation des éléments.

2.3. Calcul de la signature d'une permutation quelconque

2.3.1. Proposition. Si $c = (a_1 a_2 ... a_\ell)$ est un cycle de longueur ℓ dans un ensemble fini A, alors $\varepsilon(c) = (-1)^{\ell-1}$.

Démonstration. Il suffit de numéroter les éléments en sorte que a_1, a_2, \ldots, a_ℓ soient précisément les ℓ premiers éléments de A, et d'observer que le nombre d'inversions de $(1\ 2\ \ldots\ \ell)$ est alors exactement $\ell-1$ (on applique ici le corollaire 2.2.3). \square

2.3.2. Corollaire. Pour une permutation $\sigma \in \mathfrak{S}_A$ décomposée comme

$$\sigma = c_1 \circ c_2 \circ \ldots \circ c_p$$

avec des cycles c_j à supports disjoints de longueurs respectives $\ell_1, \ell_2, \ldots, \ell_p$, on a

$$\varepsilon(\sigma) = (-1)^{(\ell_1 - 1) + (\ell_2 - 1) + \dots + (\ell_p - 1)}.$$

On observera qu'il est algorithmiquement beaucoup plus efficace de calculer la signature à l'aide d'une décomposition en cycles qu'en examinant les inversions

de toutes les paires $\{i, j\} \in P_n$. En effet, dans le premier cas, on fait un nombre d'opérations d'un ordre de grandeur égal à n, alors que dans le deuxième cas, c'est de l'ordre de $\frac{n(n-1)}{2} \sim \frac{1}{2}n^2$.

2.3.3. Remarque. Pour $\{a_1, a_2, \ldots, a_\ell\} \subset \{1, 2, \ldots, n\}$, une façon équivalente de démontrer la proposition 2.3.1 est d'observer que le cycle $c = (a_1 a_2 \ldots a_\ell)$ est le conjugué du cycle $c_\ell = (1 \ 2 \ \ldots \ \ell)$ par la permutation

$$\gamma = \begin{bmatrix} 1 & 2 & \dots & \ell & \ell+1 & \dots & n \\ a_1 & a_2 & \dots & a_\ell & b_1 & \dots & b_{n-\ell} \end{bmatrix}$$

où $\{b_1,\ldots,b_{n-\ell}\}$ est le complémentaire de $\{a_1\,a_2\ldots a_\ell\}$ dans $\{1,2,\ldots,n\}$, c'està-dire que $c=\gamma\circ c_\ell\circ \gamma^{-1}$ (exercice!)

Plus généralement, on voit facilement que deux permutations $\sigma, \sigma' \in \mathfrak{S}_n$ sont conjuguées, i.e. $\sigma' = \gamma \circ \sigma \circ \gamma^{-1}$ pour un certain élément $\gamma \in \mathfrak{S}_n$, si et seulement si elles ont des décompositions en cycles disjoints

$$\sigma = c_1 \circ c_2 \circ \ldots \circ c_p, \quad \sigma' = c_1' \circ c_2' \circ \ldots \circ c_p'$$

formées du même nombre p de cycles, avec des longueurs identiques $\ell'_j = \ell_j$ (après avoir éventuellement réordonné les composées). Il suffit pour cela de prendre γ qui envoie $\operatorname{Supp} c_j$ sur $\operatorname{Supp} c'_j$ en respectant l'ordre cyclique des éléments dans ces cycles, et qui envoie $\{1,2,\ldots,n\} \setminus \bigcup \operatorname{Supp} c_j$ bijectivement sur $\{1,2,\ldots,n\} \setminus \bigcup \operatorname{Supp} c'_j$.

2.4. Le sous-groupe alterné A_n

2.4.1. Définition. On pose

$$A_n = \ker \varepsilon = \{ \sigma \in \mathfrak{S}_n / \varepsilon(\sigma) = +1 \}.$$

C'est un sous-groupe de \mathfrak{S}_n .

2.4.2. Proposition. On a $A_1 = \mathfrak{S}_1 = \{ \mathrm{Id} \}$, et pour $n \geq 2$, card $A_n = \frac{1}{2}n!$.

Démonstration. Posons

$$\mathfrak{S}_n^+ = \{ \sigma \in \mathfrak{S}_n \, / \, \varepsilon(\sigma) = +1 \} = \mathcal{A}_n, \quad \mathfrak{S}_n^- = \{ \sigma \in \mathfrak{S}_n \, / \, \varepsilon(\sigma) = -1 \}.$$

Alors on a la réunion disjointe $\mathfrak{S}_n = \mathfrak{S}_n^+ \cup \mathfrak{S}_n^-$, et pour $n \ge 2$, on a une bijection

$$\mathfrak{S}_n^+ \longrightarrow \mathfrak{S}_n^-, \quad \sigma \longmapsto \sigma \circ \tau_{1,2}.$$

Par conséquent card $\mathfrak{S}_n^+ = \operatorname{card} \mathfrak{S}_n^- = \operatorname{card} \mathcal{A}_n = \frac{1}{2}n!$.

2.4.3. Complément historique. Pour $n \ge 5$, on peut démontrer que \mathcal{A}_n est un groupe simple, c'est-à-dire que \mathcal{A}_n n'a aucun sous-groupe distingué H autre

que $H = \{ \mathrm{Id} \}$ et $H = \mathcal{A}_n$ (un sous-groupe distingué H d'un groupe G est un sous-groupe invariant par conjugaison : $\forall \gamma \in G, \ \gamma H \gamma^{-1} = H)$; d'autre part, \mathcal{A}_n est non commutatif si $n \geq 5$. Vers 1830, Évariste Galois a déduit de ce résultat que les racines complexes z_1, \ldots, z_n d'un polynôme général $P \in \mathbb{Q}[X]$ de degré n ne peuvent s'exprimer par radicaux à partir de \mathbb{Q} , à savoir comme combinaisons de racines p-ièmes "enchevêtrées" en partant des rationnels – c'était une question ouverte depuis la découverte des formules de résolution des équations de degré 3 et 4 par Tartaglia et Ferrari au 16^e siècle. On vérifie en effet que le corps $\mathbb{K} = \mathbb{Q}[z_1, \dots, z_n]$ engendré par les racines de P admet un groupe d'automorphismes $\operatorname{Aut}(\mathbb{K})$ de permutation des racines égal à \mathfrak{S}_n si P est général. Or, \mathfrak{S}_n ne peut se "dévisser" à l'aide de groupes abéliens, alors que ce serait le cas pour $\operatorname{Aut}(\mathbb{K})$ si les racines étaient résolubles par radicaux. É. Galois a découvert ces résultats alors qu'il avait à peine 20 ans, et les a consignés fébrilement dans un testament écrit à la veille de son duel. Ils sont restés incompris de la communauté mathématique pendant au moins 20 ans. C'est d'ailleurs à cette occasion qu'il a introduit la notion fondamentale de groupe!

3. Générateurs du groupe des permutations

3.1. Génération par transpositions

3.1.1. Théorème. Toute permutation $\sigma \in \mathfrak{S}_n$ s'écrit comme un produit d'au plus $\frac{n(n-1)}{2}$ transpositions $\tau_{i,i+1}$ portant sur des éléments consécutifs, $1 \leq i \leq n-1$, c'est-à-dire

$$\sigma = \tau_{i_1, i_1+1} \circ \tau_{i_2, i_2+1} \circ \cdots \circ \tau_{i_k, i_k+1}, \quad k \leqslant \frac{n(n-1)}{2}.$$

Démonstration. On raisonne par récurrence sur $N(\sigma)$. Pour $N(\sigma) = 0$, on a $\sigma = \mathrm{Id}$, et le résutat est vrai avec k = 0 (produit vide, égal à Id par convention).

Supposons maintenant que $N=N(\sigma)\geqslant 1$ et que le résultat ait déjà été démontré pour les permutations σ' telles que $N(\sigma')=N-1$. Il existe alors $j\in\{1,2,\ldots,n-1\}$ tel que $\sigma(j)>\sigma(j+1)$, sinon σ serait strictement croissante (donc $\sigma=\operatorname{Id}$ et $N(\sigma)=0$ contrairement à notre hypothèse). Posons

$$\sigma' = \sigma \circ \tau_{j,j+1}$$

$$= \begin{bmatrix} 1 & 2 & \dots & j-1 & j & j+1 & j+2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(j-1) & \sigma(j+1) & \sigma(j) & \sigma(j+2) & \dots & \sigma(n) \end{bmatrix}.$$

Alors l'inversion $\sigma(j+1) < \sigma(j)$ n'est plus une inversion pour σ' . On a donc $N(\sigma') = N(\sigma) - 1 = N - 1$, et par hypothèse de récurrence, il existe une décomposition

$$\sigma' = \tau_{i_1,i_1+1} \circ \tau_{i_2,i_2+1} \circ \cdots \circ \tau_{i_\ell,i_\ell+1},$$

d'où

$$\sigma = \sigma' \circ \tau_{j,j+1} = \tau_{i_1,i_1+1} \circ \tau_{i_2,i_2+1} \circ \cdots \circ \tau_{i_\ell,i_\ell+1} \circ \tau_{j,j+1}.$$

Par récurrence, ce raisonnement fournit une décomposition ayant exactement $k = N(\sigma)$ transpositions $\tau_{i,i+1}$, de sorte que $k \leq \frac{N(N-1)}{2}$.

3.1.2. Corollaire. En particulier, toute permutation $\sigma \in \mathfrak{S}_n$ est une composée

$$\sigma = \tau_{a_1,b_1} \circ \tau_{a_2,b_2} \circ \cdots \circ \tau_{a_k,b_k}$$

de transpositions, et la signature $\varepsilon(\sigma) = (-1)^k$ est déterminée par la parité du nombre de transpositions nécessaires (et inversement).

3.2. Génération par une transposition et un cycle

Si $c=(1\ 2\ \dots\ n)$ est le cycle $1\mapsto 2\mapsto \dots\mapsto (n-1)\mapsto n\mapsto 1$ de longueur n, on a $c^{j-1}(i)=i+j-1$ modulo n, et on voit facilement que

$$\tau_{i,j+1} = c^{j-1} \circ \tau_{1,2} \circ c^{-(j-1)}$$

puisque $c^{-(j-1)}$ "ramène" $\{j, j+1\}$ sur $\{1, 2\}$, tandis que c^{j-1} "renvoie" $\{2, 1\}$ sur $\{j+1, j\}$. Ceci montre que les transpositions $\tau_{j,j+1}$ sont toutes conjuguées de $\tau_{1,2}$ par des puissances de c. Le théorème 3.1.1 implique alors

3.2.1. Théorème. Le groupe \mathfrak{S}_n est engendré par le cycle $c = (1 \ 2 \dots n)$ et la permutation $\tau = \tau_{1,2}$, c'est-à-dire que toute permutation σ peut s'écrire comme une composée (non commutative) de τ et de puissances c^i entremêlées :

$$\sigma = c^{j_0} \circ \tau \circ c^{j_1} \circ \tau \circ \cdots \circ c^{j_{k-1}} \circ \tau \circ c^{j_k}, \qquad 0 \leqslant j_{\ell} \leqslant n-1.$$

3.2.2. Exercice. On peut démontrer que pour $n \ge 3$ le groupe alterné A_n est engendré par les cycles $(a_1 \ a_2 \ a_3)$ de longueur 3. Exercice pour le lecteur!